Python: Type and annotations#
Python 3.5 introduced Python explicit typing and annotations that allows developers to add type hints to variables, function parameters, and return values. Type hints are used to indicate the data types of variables and input/output of functions and methods. They are not enforced by the Python runtime, but can be used by third-party tools such as type checkers, IDEs, linters, etc. Type hints provide two benefits: they help people reading your code to know what types of data to expect, and they can be used by the Python interpreter to check your code for errors at runtime, saving you from some frustrating bugs. Type hints can also help build and maintain a cleaner architecture, as the act of writing type hints forces you to think about the types in your program. However, type hints take developer time and effort to add, and work best in modern Pythons.
Type hints are optional and do not sacrifice Python’s positive attributes as a dynamic, readable, and beginner-friendly language. They can be used in libraries that will be used by others, especially ones published on PyPI, to add value to the code.
In this chapter, we will get a look into Python type checking:
Type annotations and type hints
Adding static types to code, both your code and the code of others
Running a static type checker
Enforcing types at runtime
Python typing: dynamic#
Python is a dynamically typed language. This means that the Python interpreter does type checking only as code runs, and that the type of a variable is allowed to change over its lifetime.
The following dummy examples demonstrate that Python has dynamic typing:
if False:
1 + "two" # This line never runs, so no TypeError is raised
else:
1 + 2
1 + "two" # Now this is type checked, and a TypeError is raised
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[2], line 1
----> 1 1 + "two" # Now this is type checked, and a TypeError is raised
TypeError: unsupported operand type(s) for +: 'int' and 'str'
The branch 1 + "two"
never runs so it’s never type checked. The second example shows that when 1 + "two"
is evaluated but raises a TypeError since you can’t add an integer and a string in Python.
Python also allows variables to change type. For example:
that = "hello"
print(that, type(that))
that = 3.14
print(that, type(that))
hello <class 'str'>
3.14 <class 'float'>
The type of that
is allowed to change, and Python correctly infers the type as it changes.
The opposite of dynamic typing is static typing. Static type checks are performed without running the program. In most statically typed languages, for instance C/C++, Java, and Rust, this is done as your program is compiled.
With static typing, variables are not allowed to change types, although mechanisms may exist to cast a variable to a different type.
Static typing looks like this (rust):
let str thing = "Hello";
thing = "World";
The first line declares that the variable thing
is bound to a String type at compile time.
The name can never be rebound to another type after that (in the local scope). The second line assigns a different value to this variable, but can never assign a non String-type object.
For instance, if you were to later say thing = 3.14
the compiler would raise an error because of incompatible types.
Python will always remain a dynamically typed language. However, PEP 484 introduced type hints, which make it possible to also do static type checking of Python code.
Unlike how types work in most other statically typed languages, type hints by themselves don’t cause Python to enforce types. As the name says, type hints just suggest types. Enforcing types can happen through other tools (e.g., linters).
Note
Duck Typing
“If it walks like a duck and it quacks like a duck, then it must be a duck.”
Python is a dynamically typed language, which means that the type (class) of a variable is not explicitly declared. Duck typing is a concept where the type or the class of an object is less important than the methods it defines. Using duck typing means that you do not check types but rather the presence of a given method or attribute.
import pandas as pd
pd.read_csv?
Signature:
pd.read_csv(
filepath_or_buffer: 'FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]',
*,
sep: 'str | None | lib.NoDefault' = <no_default>,
delimiter: 'str | None | lib.NoDefault' = None,
header: "int | Sequence[int] | None | Literal['infer']" = 'infer',
names: 'Sequence[Hashable] | None | lib.NoDefault' = <no_default>,
index_col: 'IndexLabel | Literal[False] | None' = None,
usecols=None,
dtype: 'DtypeArg | None' = None,
engine: 'CSVEngine | None' = None,
converters=None,
true_values=None,
false_values=None,
skipinitialspace: 'bool' = False,
skiprows=None,
skipfooter: 'int' = 0,
nrows: 'int | None' = None,
na_values=None,
keep_default_na: 'bool' = True,
na_filter: 'bool' = True,
verbose: 'bool' = False,
skip_blank_lines: 'bool' = True,
parse_dates: 'bool | Sequence[Hashable] | None' = None,
infer_datetime_format: 'bool | lib.NoDefault' = <no_default>,
keep_date_col: 'bool' = False,
date_parser=<no_default>,
date_format: 'str | None' = None,
dayfirst: 'bool' = False,
cache_dates: 'bool' = True,
iterator: 'bool' = False,
chunksize: 'int | None' = None,
compression: 'CompressionOptions' = 'infer',
thousands: 'str | None' = None,
decimal: 'str' = '.',
lineterminator: 'str | None' = None,
quotechar: 'str' = '"',
quoting: 'int' = 0,
doublequote: 'bool' = True,
escapechar: 'str | None' = None,
comment: 'str | None' = None,
encoding: 'str | None' = None,
encoding_errors: 'str | None' = 'strict',
dialect: 'str | csv.Dialect | None' = None,
on_bad_lines: 'str' = 'error',
delim_whitespace: 'bool' = False,
low_memory=True,
memory_map: 'bool' = False,
float_precision: "Literal['high', 'legacy'] | None" = None,
storage_options: 'StorageOptions' = None,
dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>,
) -> 'DataFrame | TextFileReader'
Docstring:
Read a comma-separated values (csv) file into DataFrame.
Also supports optionally iterating or breaking of the file
into chunks.
Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method, such as
a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default ','
Delimiter to use. If sep is None, the C engine cannot automatically detect
the separator, but the Python parsing engine can, meaning the latter will
be used and automatically detect the separator by Python's builtin sniffer
tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
different from ``'\s+'`` will be interpreted as regular expressions and
will also force the use of the Python parsing engine. Note that regex
delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, default ``None``
Alias for sep.
header : int, list of int, None, default 'infer'
Row number(s) to use as the column names, and the start of the
data. Default behavior is to infer the column names: if no names
are passed the behavior is identical to ``header=0`` and column
names are inferred from the first line of the file, if column
names are passed explicitly then the behavior is identical to
``header=None``. Explicitly pass ``header=0`` to be able to
replace existing names. The header can be a list of integers that
specify row locations for a multi-index on the columns
e.g. [0,1,3]. Intervening rows that are not specified will be
skipped (e.g. 2 in this example is skipped). Note that this
parameter ignores commented lines and empty lines if
``skip_blank_lines=True``, so ``header=0`` denotes the first line of
data rather than the first line of the file.
names : array-like, optional
List of column names to use. If the file contains a header row,
then you should explicitly pass ``header=0`` to override the column names.
Duplicates in this list are not allowed.
index_col : int, str, sequence of int / str, or False, optional, default ``None``
Column(s) to use as the row labels of the ``DataFrame``, either given as
string name or column index. If a sequence of int / str is given, a
MultiIndex is used.
Note: ``index_col=False`` can be used to force pandas to *not* use the first
column as the index, e.g. when you have a malformed file with delimiters at
the end of each line.
usecols : list-like or callable, optional
Return a subset of the columns. If list-like, all elements must either
be positional (i.e. integer indices into the document columns) or strings
that correspond to column names provided either by the user in `names` or
inferred from the document header row(s). If ``names`` are given, the document
header row(s) are not taken into account. For example, a valid list-like
`usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
To instantiate a DataFrame from ``data`` with element order preserved use
``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
in ``['foo', 'bar']`` order or
``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
for ``['bar', 'foo']`` order.
If callable, the callable function will be evaluated against the column
names, returning names where the callable function evaluates to True. An
example of a valid callable argument would be ``lambda x: x.upper() in
['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
parsing time and lower memory usage.
dtype : Type name or dict of column -> type, optional
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32,
'c': 'Int64'}
Use `str` or `object` together with suitable `na_values` settings
to preserve and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
.. versionadded:: 1.5.0
Support for defaultdict was added. Specify a defaultdict as input where
the default determines the dtype of the columns which are not explicitly
listed.
engine : {'c', 'python', 'pyarrow'}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine
is currently more feature-complete. Multithreading is currently only supported by
the pyarrow engine.
.. versionadded:: 1.4.0
The "pyarrow" engine was added as an *experimental* engine, and some features
are unsupported, or may not work correctly, with this engine.
converters : dict, optional
Dict of functions for converting values in certain columns. Keys can either
be integers or column labels.
true_values : list, optional
Values to consider as True in addition to case-insensitive variants of "True".
false_values : list, optional
Values to consider as False in addition to case-insensitive variants of "False".
skipinitialspace : bool, default False
Skip spaces after delimiter.
skiprows : list-like, int or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int)
at the start of the file.
If callable, the callable function will be evaluated against the row
indices, returning True if the row should be skipped and False otherwise.
An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine='c').
nrows : int, optional
Number of rows of file to read. Useful for reading pieces of large files.
na_values : scalar, str, list-like, or dict, optional
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted as
NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'None',
'n/a', 'nan', 'null'.
keep_default_na : bool, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether `na_values` is passed in, the behavior is as follows:
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
is appended to the default NaN values used for parsing.
* If `keep_default_na` is True, and `na_values` are not specified, only
the default NaN values are used for parsing.
* If `keep_default_na` is False, and `na_values` are specified, only
the NaN values specified `na_values` are used for parsing.
* If `keep_default_na` is False, and `na_values` are not specified, no
strings will be parsed as NaN.
Note that if `na_filter` is passed in as False, the `keep_default_na` and
`na_values` parameters will be ignored.
na_filter : bool, default True
Detect missing value markers (empty strings and the value of na_values). In
data without any NAs, passing na_filter=False can improve the performance
of reading a large file.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : bool, default True
If True, skip over blank lines rather than interpreting as NaN values.
parse_dates : bool or list of int or names or list of lists or dict, default False
The behavior is as follows:
* boolean. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index cannot be represented as an array of datetimes,
say because of an unparsable value or a mixture of timezones, the column
or index will be returned unaltered as an object data type. For
non-standard datetime parsing, use ``pd.to_datetime`` after
``pd.read_csv``.
Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
If True and `parse_dates` is enabled, pandas will attempt to infer the
format of the datetime strings in the columns, and if it can be inferred,
switch to a faster method of parsing them. In some cases this can increase
the parsing speed by 5-10x.
.. deprecated:: 2.0.0
A strict version of this argument is now the default, passing it has no effect.
keep_date_col : bool, default False
If True and `parse_dates` specifies combining multiple columns then
keep the original columns.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
.. deprecated:: 2.0.0
Use ``date_format`` instead, or read in as ``object`` and then apply
:func:`to_datetime` as-needed.
date_format : str or dict of column -> format, default ``None``
If used in conjunction with ``parse_dates``, will parse dates according to this
format. For anything more complex,
please read in as ``object`` and then apply :func:`to_datetime` as-needed.
.. versionadded:: 2.0.0
dayfirst : bool, default False
DD/MM format dates, international and European format.
cache_dates : bool, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
iterator : bool, default False
Return TextFileReader object for iteration or getting chunks with
``get_chunk()``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
chunksize : int, optional
Return TextFileReader object for iteration.
See the `IO Tools docs
<https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
for more information on ``iterator`` and ``chunksize``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
compression : str or dict, default 'infer'
For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in.
Set to ``None`` for no decompression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdDecompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for Zstandard decompression using a
custom compression dictionary:
``compression={'method': 'zstd', 'dict_data': my_compression_dict}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionchanged:: 1.4.0 Zstandard support.
thousands : str, optional
Thousands separator.
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European data).
lineterminator : str (length 1), optional
Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
The character used to denote the start and end of a quoted item. Quoted
items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : bool, default ``True``
When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
whether or not to interpret two consecutive quotechar elements INSIDE a
field as a single ``quotechar`` element.
escapechar : str (length 1), optional
One-character string used to escape other characters.
comment : str, optional
Indicates remainder of line should not be parsed. If found at the beginning
of a line, the line will be ignored altogether. This parameter must be a
single character. Like empty lines (as long as ``skip_blank_lines=True``),
fully commented lines are ignored by the parameter `header` but not by
`skiprows`. For example, if ``comment='#'``, parsing
``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
treated as the header.
encoding : str, optional, default "utf-8"
Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
standard encodings
<https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
.. versionchanged:: 1.2
When ``encoding`` is ``None``, ``errors="replace"`` is passed to
``open()``. Otherwise, ``errors="strict"`` is passed to ``open()``.
This behavior was previously only the case for ``engine="python"``.
.. versionchanged:: 1.3.0
``encoding_errors`` is a new argument. ``encoding`` has no longer an
influence on how encoding errors are handled.
encoding_errors : str, optional, default "strict"
How encoding errors are treated. `List of possible values
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
.. versionadded:: 1.3.0
dialect : str or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the
following parameters: `delimiter`, `doublequote`, `escapechar`,
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
on_bad_lines : {'error', 'warn', 'skip'} or callable, default 'error'
Specifies what to do upon encountering a bad line (a line with too many fields).
Allowed values are :
- 'error', raise an Exception when a bad line is encountered.
- 'warn', raise a warning when a bad line is encountered and skip that line.
- 'skip', skip bad lines without raising or warning when they are encountered.
.. versionadded:: 1.3.0
.. versionadded:: 1.4.0
- callable, function with signature
``(bad_line: list[str]) -> list[str] | None`` that will process a single
bad line. ``bad_line`` is a list of strings split by the ``sep``.
If the function returns ``None``, the bad line will be ignored.
If the function returns a new list of strings with more elements than
expected, a ``ParserWarning`` will be emitted while dropping extra elements.
Only supported when ``engine="python"``
delim_whitespace : bool, default False
Specifies whether or not whitespace (e.g. ``' '`` or ``' '``) will be
used as the sep. Equivalent to setting ``sep='\s+'``. If this option
is set to True, nothing should be passed in for the ``delimiter``
parameter.
low_memory : bool, default True
Internally process the file in chunks, resulting in lower memory use
while parsing, but possibly mixed type inference. To ensure no mixed
types either set False, or specify the type with the `dtype` parameter.
Note that the entire file is read into a single DataFrame regardless,
use the `chunksize` or `iterator` parameter to return the data in chunks.
(Only valid with C parser).
memory_map : bool, default False
If a filepath is provided for `filepath_or_buffer`, map the file object
directly onto memory and access the data directly from there. Using this
option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are ``None`` or 'high' for the ordinary converter,
'legacy' for the original lower precision pandas converter, and
'round_trip' for the round-trip converter.
.. versionchanged:: 1.2
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional
data structure with labeled axes.
See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
>>> pd.read_csv('data.csv') # doctest: +SKIP
File: ~/Work/projects/astro_ds/venv/lib/python3.10/site-packages/pandas/io/parsers/readers.py
Type: function
Annotations#
Python 3.0 (PEP3107) introduced type annotations for function parameters and return values. Originally without any specific purpose, but a way to associate arbitrary expressions to function arguments and return values.
Later, PEP 484 and Python 3.5 defined how to add type hints to your Python code. This standard spawned from the work that Jukka Lehtosalo had done on their Ph.D. project Mypy
.
The main way to add type hints is using annotations. As type checking is becoming more and more common, this also means that annotations should mainly be reserved for type hints.
Function Annotations#
For functions, you can annotate arguments and the return value. This is done as follows:
def func(arg: arg_type, optarg: arg_type = default) -> return_type:
...
For arguments the syntax is variable_name: annotation
, while the return type is annotated using -> annotation
. Note that the annotation must be a valid Python expression.
import math
def circle_circumference(radius: float) -> float:
return 2 * math.pi * radius
circle_circumference(1.23)
7.728317927830891
When running the code, you can also inspect the annotations. They are stored in a special .__annotations__
attribute on the function:
circle_circumference.__annotations__
{'radius': float, 'return': float}
Variable Annotations#
Variable annotations are defined in PEP 526 and introduced in Python 3.6. The syntax is the same as for function argument annotations:
pi: float = 3.142
The variable pi has been annotated with the float type hint.
You’re allowed to annotate any variable without giving it a value. This adds the annotation to the __annotations__
dictionary, while the variable remains undefined:
nothing: str
nothing
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
/Users/fouesneau/Work/projects/astro_ds/astro_ds/chapters/python/chapter10-type_annotations.ipynb Cell 21 line 2
<a href='vscode-notebook-cell:/Users/fouesneau/Work/projects/astro_ds/astro_ds/chapters/python/chapter10-type_annotations.ipynb#X41sZmlsZQ%3D%3D?line=0'>1</a> nothing: str
----> <a href='vscode-notebook-cell:/Users/fouesneau/Work/projects/astro_ds/astro_ds/chapters/python/chapter10-type_annotations.ipynb#X41sZmlsZQ%3D%3D?line=1'>2</a> nothing
NameError: name 'nothing' is not defined
Pros and Cons#
This chapter gives a little taste of what type checking in Python looks like. You also see examples of one of the advantages of adding types to your code: reability and type hints help catch certain errors.
Type hints also help document your code. Traditionally, you would use docstrings if you wanted to document the expected types of a function’s arguments. This works, but as there is no standard for docstrings (despite PEP 257). Type hints are a more formal way to document your code, and they can be used by tools to check your code for errors.
import numpy as np
np.ones?
Signature: np.ones(shape, dtype=None, order='C', *, like=None)
Docstring:
Return a new array of given shape and type, filled with ones.
Parameters
----------
shape : int or sequence of ints
Shape of the new array, e.g., ``(2, 3)`` or ``2``.
dtype : data-type, optional
The desired data-type for the array, e.g., `numpy.int8`. Default is
`numpy.float64`.
order : {'C', 'F'}, optional, default: C
Whether to store multi-dimensional data in row-major
(C-style) or column-major (Fortran-style) order in
memory.
like : array_like, optional
Reference object to allow the creation of arrays which are not
NumPy arrays. If an array-like passed in as ``like`` supports
the ``__array_function__`` protocol, the result will be defined
by it. In this case, it ensures the creation of an array object
compatible with that passed in via this argument.
.. versionadded:: 1.20.0
Returns
-------
out : ndarray
Array of ones with the given shape, dtype, and order.
See Also
--------
ones_like : Return an array of ones with shape and type of input.
empty : Return a new uninitialized array.
zeros : Return a new array setting values to zero.
full : Return a new array of given shape filled with value.
Examples
--------
>>> np.ones(5)
array([1., 1., 1., 1., 1.])
>>> np.ones((5,), dtype=int)
array([1, 1, 1, 1, 1])
>>> np.ones((2, 1))
array([[1.],
[1.]])
>>> s = (2,2)
>>> np.ones(s)
array([[1., 1.],
[1., 1.]])
File: ~/Work/projects/astro_ds/venv/lib/python3.10/site-packages/numpy/core/numeric.py
Type: function
import pandas as pd
pd.read_csv?
Signature:
pd.read_csv(
filepath_or_buffer: 'FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str]',
*,
sep: 'str | None | lib.NoDefault' = <no_default>,
delimiter: 'str | None | lib.NoDefault' = None,
header: "int | Sequence[int] | None | Literal['infer']" = 'infer',
names: 'Sequence[Hashable] | None | lib.NoDefault' = <no_default>,
index_col: 'IndexLabel | Literal[False] | None' = None,
usecols=None,
dtype: 'DtypeArg | None' = None,
engine: 'CSVEngine | None' = None,
converters=None,
true_values=None,
false_values=None,
skipinitialspace: 'bool' = False,
skiprows=None,
skipfooter: 'int' = 0,
nrows: 'int | None' = None,
na_values=None,
keep_default_na: 'bool' = True,
na_filter: 'bool' = True,
verbose: 'bool' = False,
skip_blank_lines: 'bool' = True,
parse_dates: 'bool | Sequence[Hashable] | None' = None,
infer_datetime_format: 'bool | lib.NoDefault' = <no_default>,
keep_date_col: 'bool' = False,
date_parser=<no_default>,
date_format: 'str | None' = None,
dayfirst: 'bool' = False,
cache_dates: 'bool' = True,
iterator: 'bool' = False,
chunksize: 'int | None' = None,
compression: 'CompressionOptions' = 'infer',
thousands: 'str | None' = None,
decimal: 'str' = '.',
lineterminator: 'str | None' = None,
quotechar: 'str' = '"',
quoting: 'int' = 0,
doublequote: 'bool' = True,
escapechar: 'str | None' = None,
comment: 'str | None' = None,
encoding: 'str | None' = None,
encoding_errors: 'str | None' = 'strict',
dialect: 'str | csv.Dialect | None' = None,
on_bad_lines: 'str' = 'error',
delim_whitespace: 'bool' = False,
low_memory=True,
memory_map: 'bool' = False,
float_precision: "Literal['high', 'legacy'] | None" = None,
storage_options: 'StorageOptions' = None,
dtype_backend: 'DtypeBackend | lib.NoDefault' = <no_default>,
) -> 'DataFrame | TextFileReader'
Docstring:
Read a comma-separated values (csv) file into DataFrame.
Also supports optionally iterating or breaking of the file
into chunks.
Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method, such as
a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default ','
Delimiter to use. If sep is None, the C engine cannot automatically detect
the separator, but the Python parsing engine can, meaning the latter will
be used and automatically detect the separator by Python's builtin sniffer
tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
different from ``'\s+'`` will be interpreted as regular expressions and
will also force the use of the Python parsing engine. Note that regex
delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, default ``None``
Alias for sep.
header : int, list of int, None, default 'infer'
Row number(s) to use as the column names, and the start of the
data. Default behavior is to infer the column names: if no names
are passed the behavior is identical to ``header=0`` and column
names are inferred from the first line of the file, if column
names are passed explicitly then the behavior is identical to
``header=None``. Explicitly pass ``header=0`` to be able to
replace existing names. The header can be a list of integers that
specify row locations for a multi-index on the columns
e.g. [0,1,3]. Intervening rows that are not specified will be
skipped (e.g. 2 in this example is skipped). Note that this
parameter ignores commented lines and empty lines if
``skip_blank_lines=True``, so ``header=0`` denotes the first line of
data rather than the first line of the file.
names : array-like, optional
List of column names to use. If the file contains a header row,
then you should explicitly pass ``header=0`` to override the column names.
Duplicates in this list are not allowed.
index_col : int, str, sequence of int / str, or False, optional, default ``None``
Column(s) to use as the row labels of the ``DataFrame``, either given as
string name or column index. If a sequence of int / str is given, a
MultiIndex is used.
Note: ``index_col=False`` can be used to force pandas to *not* use the first
column as the index, e.g. when you have a malformed file with delimiters at
the end of each line.
usecols : list-like or callable, optional
Return a subset of the columns. If list-like, all elements must either
be positional (i.e. integer indices into the document columns) or strings
that correspond to column names provided either by the user in `names` or
inferred from the document header row(s). If ``names`` are given, the document
header row(s) are not taken into account. For example, a valid list-like
`usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
To instantiate a DataFrame from ``data`` with element order preserved use
``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
in ``['foo', 'bar']`` order or
``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
for ``['bar', 'foo']`` order.
If callable, the callable function will be evaluated against the column
names, returning names where the callable function evaluates to True. An
example of a valid callable argument would be ``lambda x: x.upper() in
['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
parsing time and lower memory usage.
dtype : Type name or dict of column -> type, optional
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32,
'c': 'Int64'}
Use `str` or `object` together with suitable `na_values` settings
to preserve and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
.. versionadded:: 1.5.0
Support for defaultdict was added. Specify a defaultdict as input where
the default determines the dtype of the columns which are not explicitly
listed.
engine : {'c', 'python', 'pyarrow'}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine
is currently more feature-complete. Multithreading is currently only supported by
the pyarrow engine.
.. versionadded:: 1.4.0
The "pyarrow" engine was added as an *experimental* engine, and some features
are unsupported, or may not work correctly, with this engine.
converters : dict, optional
Dict of functions for converting values in certain columns. Keys can either
be integers or column labels.
true_values : list, optional
Values to consider as True in addition to case-insensitive variants of "True".
false_values : list, optional
Values to consider as False in addition to case-insensitive variants of "False".
skipinitialspace : bool, default False
Skip spaces after delimiter.
skiprows : list-like, int or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int)
at the start of the file.
If callable, the callable function will be evaluated against the row
indices, returning True if the row should be skipped and False otherwise.
An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine='c').
nrows : int, optional
Number of rows of file to read. Useful for reading pieces of large files.
na_values : scalar, str, list-like, or dict, optional
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted as
NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
'1.#IND', '1.#QNAN', '<NA>', 'N/A', 'NA', 'NULL', 'NaN', 'None',
'n/a', 'nan', 'null'.
keep_default_na : bool, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether `na_values` is passed in, the behavior is as follows:
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
is appended to the default NaN values used for parsing.
* If `keep_default_na` is True, and `na_values` are not specified, only
the default NaN values are used for parsing.
* If `keep_default_na` is False, and `na_values` are specified, only
the NaN values specified `na_values` are used for parsing.
* If `keep_default_na` is False, and `na_values` are not specified, no
strings will be parsed as NaN.
Note that if `na_filter` is passed in as False, the `keep_default_na` and
`na_values` parameters will be ignored.
na_filter : bool, default True
Detect missing value markers (empty strings and the value of na_values). In
data without any NAs, passing na_filter=False can improve the performance
of reading a large file.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : bool, default True
If True, skip over blank lines rather than interpreting as NaN values.
parse_dates : bool or list of int or names or list of lists or dict, default False
The behavior is as follows:
* boolean. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {'foo' : [1, 3]} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index cannot be represented as an array of datetimes,
say because of an unparsable value or a mixture of timezones, the column
or index will be returned unaltered as an object data type. For
non-standard datetime parsing, use ``pd.to_datetime`` after
``pd.read_csv``.
Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
If True and `parse_dates` is enabled, pandas will attempt to infer the
format of the datetime strings in the columns, and if it can be inferred,
switch to a faster method of parsing them. In some cases this can increase
the parsing speed by 5-10x.
.. deprecated:: 2.0.0
A strict version of this argument is now the default, passing it has no effect.
keep_date_col : bool, default False
If True and `parse_dates` specifies combining multiple columns then
keep the original columns.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
.. deprecated:: 2.0.0
Use ``date_format`` instead, or read in as ``object`` and then apply
:func:`to_datetime` as-needed.
date_format : str or dict of column -> format, default ``None``
If used in conjunction with ``parse_dates``, will parse dates according to this
format. For anything more complex,
please read in as ``object`` and then apply :func:`to_datetime` as-needed.
.. versionadded:: 2.0.0
dayfirst : bool, default False
DD/MM format dates, international and European format.
cache_dates : bool, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
iterator : bool, default False
Return TextFileReader object for iteration or getting chunks with
``get_chunk()``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
chunksize : int, optional
Return TextFileReader object for iteration.
See the `IO Tools docs
<https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
for more information on ``iterator`` and ``chunksize``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
compression : str or dict, default 'infer'
For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is
path-like, then detect compression from the following extensions: '.gz',
'.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2'
(otherwise no compression).
If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in.
Set to ``None`` for no decompression.
Can also be a dict with key ``'method'`` set
to one of {``'zip'``, ``'gzip'``, ``'bz2'``, ``'zstd'``, ``'tar'``} and other
key-value pairs are forwarded to
``zipfile.ZipFile``, ``gzip.GzipFile``,
``bz2.BZ2File``, ``zstandard.ZstdDecompressor`` or
``tarfile.TarFile``, respectively.
As an example, the following could be passed for Zstandard decompression using a
custom compression dictionary:
``compression={'method': 'zstd', 'dict_data': my_compression_dict}``.
.. versionadded:: 1.5.0
Added support for `.tar` files.
.. versionchanged:: 1.4.0 Zstandard support.
thousands : str, optional
Thousands separator.
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European data).
lineterminator : str (length 1), optional
Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
The character used to denote the start and end of a quoted item. Quoted
items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : bool, default ``True``
When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
whether or not to interpret two consecutive quotechar elements INSIDE a
field as a single ``quotechar`` element.
escapechar : str (length 1), optional
One-character string used to escape other characters.
comment : str, optional
Indicates remainder of line should not be parsed. If found at the beginning
of a line, the line will be ignored altogether. This parameter must be a
single character. Like empty lines (as long as ``skip_blank_lines=True``),
fully commented lines are ignored by the parameter `header` but not by
`skiprows`. For example, if ``comment='#'``, parsing
``#empty\na,b,c\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
treated as the header.
encoding : str, optional, default "utf-8"
Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
standard encodings
<https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
.. versionchanged:: 1.2
When ``encoding`` is ``None``, ``errors="replace"`` is passed to
``open()``. Otherwise, ``errors="strict"`` is passed to ``open()``.
This behavior was previously only the case for ``engine="python"``.
.. versionchanged:: 1.3.0
``encoding_errors`` is a new argument. ``encoding`` has no longer an
influence on how encoding errors are handled.
encoding_errors : str, optional, default "strict"
How encoding errors are treated. `List of possible values
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
.. versionadded:: 1.3.0
dialect : str or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the
following parameters: `delimiter`, `doublequote`, `escapechar`,
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
on_bad_lines : {'error', 'warn', 'skip'} or callable, default 'error'
Specifies what to do upon encountering a bad line (a line with too many fields).
Allowed values are :
- 'error', raise an Exception when a bad line is encountered.
- 'warn', raise a warning when a bad line is encountered and skip that line.
- 'skip', skip bad lines without raising or warning when they are encountered.
.. versionadded:: 1.3.0
.. versionadded:: 1.4.0
- callable, function with signature
``(bad_line: list[str]) -> list[str] | None`` that will process a single
bad line. ``bad_line`` is a list of strings split by the ``sep``.
If the function returns ``None``, the bad line will be ignored.
If the function returns a new list of strings with more elements than
expected, a ``ParserWarning`` will be emitted while dropping extra elements.
Only supported when ``engine="python"``
delim_whitespace : bool, default False
Specifies whether or not whitespace (e.g. ``' '`` or ``' '``) will be
used as the sep. Equivalent to setting ``sep='\s+'``. If this option
is set to True, nothing should be passed in for the ``delimiter``
parameter.
low_memory : bool, default True
Internally process the file in chunks, resulting in lower memory use
while parsing, but possibly mixed type inference. To ensure no mixed
types either set False, or specify the type with the `dtype` parameter.
Note that the entire file is read into a single DataFrame regardless,
use the `chunksize` or `iterator` parameter to return the data in chunks.
(Only valid with C parser).
memory_map : bool, default False
If a filepath is provided for `filepath_or_buffer`, map the file object
directly onto memory and access the data directly from there. Using this
option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are ``None`` or 'high' for the ordinary converter,
'legacy' for the original lower precision pandas converter, and
'round_trip' for the round-trip converter.
.. versionchanged:: 1.2
storage_options : dict, optional
Extra options that make sense for a particular storage connection, e.g.
host, port, username, password, etc. For HTTP(S) URLs the key-value pairs
are forwarded to ``urllib.request.Request`` as header options. For other
URLs (e.g. starting with "s3://", and "gcs://") the key-value pairs are
forwarded to ``fsspec.open``. Please see ``fsspec`` and ``urllib`` for more
details, and for more examples on storage options refer `here
<https://pandas.pydata.org/docs/user_guide/io.html?
highlight=storage_options#reading-writing-remote-files>`_.
.. versionadded:: 1.2
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional
data structure with labeled axes.
See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
>>> pd.read_csv('data.csv') # doctest: +SKIP
File: ~/Work/projects/astro_ds/venv/lib/python3.10/site-packages/pandas/io/parsers/readers.py
Type: function
Type hints take developer time and effort to add. Even though it probably pays off in spending less time debugging, you will spend more time entering code.
If you try to enforce types, you will need to use a third-party tool and some penalty in startup time. If you need to use the typing module the import time may be a significant overhead, especially in short scripts.